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We show that in parametric down-conversion the coherence properties of a temporally partially coherent pump
field get entirely transferred to the down-converted entangled two-photon field. Under the assumption that the
frequency bandwidth of the down-converted signal-idler photons is much larger than that of the pump, we derive
the temporal coherence functions for the down-converted field, for both infinitely fast and time-averaged detec-
tion schemes. We show that in each scheme the coherence function factorizes into two separate coherence
functions with one of them carrying the entire statistical information of the pump field. In situations in which
the pump is a Gaussian Schell-model field, we derive explicit expressions for the coherence functions. Finally, we
show that the concurrence of time-energy-entangled two-qubit states is bounded by the degree of temporal
coherence of the pump field. This study can have important implications for understanding how correlations
of the pump field manifest as two-particle entanglement as well as for harnessing energy-time entanglement
for long-distance quantum communication protocols. © 2017 Optical Society of America
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1. INTRODUCTION

Coherence and entanglement are intimately related concepts.
The recent attempts at developing a resource-based theory
of coherence also reveal such relations [1–4]. One of the physi-
cal processes in which the relations between coherence and
entanglement can be systematically explored is parametric
down-conversion (PDC)—a nonlinear optical process in which
a pump photon interacts with a nonlinear crystal to produce a
pair of entangled photons, termed as signal and idler [5]. Using
the PDC photons, coherence and entanglement effects have
been observed in several degrees of freedom including polari-
zation [6], time-energy [7–16], position and momentum
[17–19], and orbital angular momentum (OAM) [20–23].

There have been several studies on how coherence and
entanglement properties of the down-converted field are
affected by different PDC settings and pump field parameters

]17,24–29 ]. However, regarding how the intrinsic correlations
of the pump field get transferred to manifest as two-photon
coherence and entanglement, there have been efforts
mostly in the polarization and spatial degrees of freedom
[19,26,30,31]. In the spatial degree of freedom, a very general
spatially partially coherent field was considered and it was
shown that the spatial coherence properties of the pump field
get entirely transferred to that of the down-converted two-
photon field [19]. However, in the temporal degree of freedom,

the effects due to the temporal correlations of the pump field
have only been studied in two limiting situations: one, in which
the constituent frequency components are completely corre-
lated (fully coherent pulsed field) [15,32–36] and the other,
in which the constituent frequency components are completely
uncorrelated (continuous-wave field) [7–14,37–43]. In this
paper, we study the coherence transfer in PDC for a general
temporally partially coherent pump field, and explicitly quan-
tify this correlation transfer for the special case of a partially
coherent Gaussian Schell-model field [44] in which the
correlations between the constituent frequency components
have a Gaussian distribution.

The paper is organized as follows. In Section 2, we consider
a general temporally partially coherent pump field and show
that its temporal coherence properties get entirely transferred
to the down-converted two-photon field. We work out the
two-photon temporal coherence functions for both infinitely
fast and time-averaged detection schemes and show that in each
scheme the coherence function factorizes into two separate
coherence functions with one of them carrying the entire
statistical information of the pump field. In Section 4, we show
that the entanglement of time-energy-entangled two-qubit
states is bounded by the degree of temporal coherence of
the partially coherent pump field. We present our conclusions
in Section 5.
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2. TRANSFER OF TEMPORAL COHERENCE
IN PDC

A. Detection with Infinitely Fast Detectors

We follow the formalism worked out in Ref. [11] and represent
a general two-alternative two-photon interference of the PDC
photons by the two-photon path diagrams shown in Fig. 1. The
pump is a general temporally partially coherent field.
Alternatives 1 and 2 are the two pathways by which a pump
photon is down-converted, and the down-converted signal and
idler photons are detected in coincidence at single-photon de-
tectors Ds and Di, respectively. There are six independent time
parameters in this setting. The subscripts p, s, and i denote the
pump, signal, and idler, respectively. We adopt the convention
that a signal photon is the one that arrives at detector Ds, while
an idler photon is the one that arrives at detector Di. The sym-
bol τ denotes the traversal time of a photon, while ϕ denotes
the phase, other than the dynamical phase, accumulated by a
photon. Thus, τs1 denotes the traversal time of the signal pho-
ton in alternative 1, etc. The various signal, idler, and pump
quantities are used to define the following parameters:

Δτ ≡ τ1 − τ2 ≡
�
τp1 �

τs1 � τi1
2

�
−

�
τp2 �

τs2 � τi2
2

�
;

Δτ 0 ≡ τ 01 − τ
0
2 ≡

�
τs1 − τi1

2

�
−

�
τs2 − τi2

2

�
;

Δϕ ≡ ϕ1 − ϕ2 ≡ �ϕp1 � ϕs1 � ϕi1� − �ϕp2 � ϕs2 � ϕi2�: (1)

The parameters defined above are identical to those defined
in Ref. [11], except for τ 01; τ

0
2, and Δτ 0, which have been scaled

down by a factor of 2. It is found that this rescaling imparts
the equations in this paper a neat and symmetric form. The
two-photon state jψi1 produced in alternative 1 in the weak
down-conversion limit is given by [32,37,45]

jψi1 � A1

ZZ
dωsdωiV �ωp�Φ1�ωs ;ωi�

× ei�ωpτp1�ϕp1�jωsiωs1
jωiiωi1

; (2)

where V �ωp� is the random spectral amplitude of the pump
field at frequency ωp, and Φ1�ωs ;ωi� is the phase-matching

function in alternative 1. The two-photon state jψi2 in alter-
native 2 can be similarly defined. The complete two-photon
state jψi at the detectors is the sum of the two-photon
states in alternatives 1 and 2 and can be written as
jψi � jψi1 � jψi2. The corresponding density matrix ρ of
the state at the detectors is therefore

ρ̂ � hjψihψ ji: (3)

Here h� � �i represents an ensemble average over infinitely
many realizations of the two-photon state.

We now denote the positive frequency parts of the electric
fields at detectors Ds and Di by Ê ���

s �t� and Ê ���
i �t�, respec-

tively, and write them as

Ê ���
s �t� � κs1Ê

���
s1 �t − τs1� � κs2Ê

���
s2 �t − τs2�; (4a)

Ê ���
i �t� � κi1Ê

���
i1 �t − τi1� � κi2Ê

���
i2 �t − τi2�; (4b)

where κs1�2� and κi1�2� are scalar amplitudes and where

Ê ���
s1 �t − τs1� � eiϕs1

Z
∞

0

dωf s1�ω − ωs0�âs1�ω�e−iω�t−τs1�

(5)

is the positive frequency part of the electric field at detector Ds
in alternative 1, etc. The function f s1�ω − ωs0� is the ampli-
tude transmission function of the filter F s placed at detector
Ds, etc. The filters F s and F i are centered at frequencies ωs0
and ωi0, respectively, and we assume the phase-matching con-
dition ωp0 � ωs0 � ωi0, where ωp0 is the central frequency of
the pump field V �ωp�. The coincidence count rate R�2�

si �t s ; t i�
of the two detectors is the probability per �unit time�2 that a
signal photon is detected at time t s and the corresponding idler
photon is detected at time ti, and it is given by R�2�

si �t s ; t i� �
Trfρ̂Ê �−�

s �t s�Ê �−�
i �t i�Ê ���

i �t i�Ê ���
s �t s�g [46]. Using the defini-

tions and expressions of Eqs. (1)–(5), we evaluate R�2�
si �t s ; t i�

to be

R�2�
si �t s ; t i�� κ21R

�2��t s; t i ;τs1;τi1�� κ22R
�2��t s ; t i ;τs2;τi2�

�κ1κ2Γ�2��t s; t i ;τs1;τi1;τs2;τi2�e−iΔϕ� c:c:; (6a)

where κ1 � κs1κi1, κ2 � κs2κi2,

Γ�2��t s ; t i ; τs1; τi1; τs2; τi2� � Trfρ̂Ê �−�
s1 �t s − τs1�

× Ê �−�
i1 �t i − τi1�Ê ���

i2 �ti − τi2�Ê ���
s2 �t s − τs2�g; (6b)

and

R�2��t s ; t i ; τs1; τi1� � Γ�2��t s ; t i ; τs1; τi1; τs1; τi1�: (6c)

Equation (6) is the interference law for the two-photon field.
The first and the second terms are the coincidence count rates
in alternatives 1 and 2, respectively. The interference term
Γ�2��t s ; t i ; τs1; τi1; τs2; τi2� appears when both the alternatives
are present, and it will be referred to as the two-photon
cross-correlation function of the down-converted field. We
now make the assumption that the spectral width Δωp0
of the pump field is much smaller than the central frequency
ωp0 and the spectral widths of the phase-matching functions
and filter functions. As a result, the phase-matching and
filter functions can be taken to be approximately constant
in the frequency range �ωp0 − Δωp0∕2;ωp0 � Δωp0∕2�. This

Fig. 1. Schematic representation of two-photon interference using
the two-photon path diagrams. Alternatives 1 and 2 are the two path-
ways by which a pump photon is down-converted and the down-
converted photons are detected at single-photon detectors Ds and Di .
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assumption remains valid for most PDC experiments employ-
ing continuous-wave pump fields [7–14,47] and pulsed pump
fields [15,32–34,36] and may only be invalid for experiments
employing ultrashort pulsed pump fields [48–50]. We use the
relations ωp � ωs � ωi, ωd � ωs − ωi, ωp0 � ωs0 � ωi0,
ωd0 � ωs0 − ωi0 and define the integration variables
ω̄p � ωp − ωp0 and ω̄d � ωd − ωd0. Using Eqs. (1)–(6), we
obtain after a long but straightforward calculation

Γ�2��t s ; t i ; τs1; τi1; τs2; τi2� � Γp

�
τ1 −

t s � ti
2

; τ2 −
t s � t i
2

�

×Γd

�
τ 01 −

t s − ti
2

; τ 02 −
t s − ti
2

�
; (7)

where

Γp

�
τ1 −

t s � t i
2

; τ2 −
t s � ti
2

�

� e−iωp0Δτ
ZZ

dω̄ 0
pd ω̄ 0 0

p hV ��ω̄ 0
p �ωp0�V �ω̄ 0 0

p �ωp0�i

× exp
�
−iω̄ 0

p

�
τ1 −

t s � ti
2

��
exp

�
iω̄ 0 0

p

�
τ2 −

t s � t i
2

��
; (8)

and

Γd

�
τ 01 −

t s − ti
2

; τ 02 −
t s − ti
2

�

� e−iωd0Δτ 0
ZZ

dω̄ 0
ddω̄

0 0
d hg�1�ω̄ 0

d �g2�ω̄ 0 0
d �i

× exp
�
−iω̄ 0

d

�
τ 01 −

t s − t i
2

��
exp

�
iω̄ 0 0

d

�
τ 02 −

t s − ti
2

��
; (9)

with

g1�ω� � Φ1

�
ωs0 �

ω

2
;ωi0 −

ω

2

�
f s1

�
ω

2

�
f i1

�
−
ω

2

�
;

etc. The ensemble average hV ��ω̄ 0
p � ωp0�V �ω̄ 0 0

p � ωp0�i is
the cross-spectral density function of the pump field. It is at
once clear from Eq. (8) that the coherence function
Γp�τ1 − t s�t i

2 ; τ2 −
t s�t i
2 � and the cross-spectral density function

hV ��ω̄ 0
p � ωp0�V �ω̄ 0 0

p � ωp0�i are connected through the gen-
eralized Wiener–Khintchine relation [51] with parameters
τ1 − �t s � ti�∕2 and τ2 − �t s � ti�∕2. So, in terms of the two-
photon time parameters τ1 − �t s � ti�∕2 and τ2 − �t s � ti�∕2,
the coherence function Γp�τ1 − t s�t i

2
; τ2 −

t s�t i
2
� has the same

functional form as that of the cross-correlation function of
the pump field. The function hg�1�ω̄ 0

d �g2�ω̄ 0 0
d �i is also in the

form of a cross-spectral density function, and as is clear from
Eq. (9), it forms a generalizedWiener–Khintchine relation with
the coherence function Γd �τ 01 − t s−t i

2 ; τ 02 −
ts−ti
2 �. Therefore, the

function Γd �τ 01 − t s−t i
2
; τ 02 −

ts−ti
2
� not only carries all the informa-

tion about the phase-matching conditions and the crystal
parameters but also carries information about any statistical
randomness that the down-converted photons go through [52].
It is interesting to note that any statistical randomness
encountered by the photons after the down-conversion
affects only Γd �τ 01 − t s−t i

2 ; τ 02 −
t s−t i
2 � and has no effect on

Γp�τ1 − t s�t i
2 ; τ2 −

t s�t i
2 �. This fact can potentially be used for

encoding information in the pump’s coherence function and
decoding if from the down-converted photons even after the
down-converted photons have passed through turbulent media.

We thus find that the two-photon cross-correlation function
factorizes into two separate coherence functions. The coherence
function Γp�τ1 − t s�ti

2 ; τ2 −
t s�t i
2 � carries the entire statistical in-

formation of the pump field, and in this way the temporal cor-
relation properties of the pump photon get entirely transferred
to the down-converted photons. This result is the temporal
analog of the effect described in Ref. [19], in which it was
shown that in PDC the spatial coherence properties of the
pump field gets entirely transferred to the down-converted
two-photon field. However, the present paper extends beyond
just establishing this analogy. For example, in Ref. [19], the
effect due to the phase-matching function was completely
ignored, but in the present paper, we have included it through
the coherence function Γd �τ 01 − t s−t i

2 ; τ 02 −
ts−ti
2 �. Moreover, like

most spatial-interference schemes, Ref. [19] does not employ
a detection scheme that involves spaceaveraging. However,
most time-domain experiments employ time-averaged detec-
tion schemes. Therefore, in the present paper, we also work
out how time-averaged detection schemes affect the temporal
coherence transfer in PDC.

B. Time-Averaged Detection Scheme

In most experiments, one does not measure the instantaneous
coincidence rate R�2�

si �t s ; t i� of Eq. (6). Instead, one measures
the time-averaged coincidence count rate, averaged over the
photon collection time T pc and the coincidence time-window
T ci. The time-averaged two-photon cross-correlation function
Γ̄�2� can be found by first expressing it as

Γ̄�2� � hhΓ�2��t s ; t i ; τs1; τi1; τs2; τi2�iit s ;t i
�

�
Γp

�
τ1 −

t s � t i
2

; τ2 −
t s � ti

2

��
ts�ti
2

×
�
Γd

�
τ 01 −

t s − ti
2

; τ 02 −
t s − ti
2

��
t s−ti
2

; (10)

and then integrating it with respect to �t s � t i�∕2 over T pc, and
with respect to �t s − ti�∕2 over T ci. In most experiments, the
coincidence time-window T ci spans a few nanoseconds, which
is much longer than the inverse frequency bandwidth of g�ω�,
typically of the order of picoseconds. The photon collection
time T pc is usually a few seconds and is much longer than
the inverse frequency bandwidth of the pump field V �ωp�, typ-
ically of the order of microseconds. Thus we perform the above
time-averaging in the limit T pc ; T ci → ∞ to obtain

Γ̄�2� � Γ̄p�τ1; τ2�Γ̄d �τ 01; τ 02�
�

ffiffiffiffiffiffiffiffiffi
Ī1Ī 2

p ffiffiffiffiffiffiffiffiffiffiffiffi
Ḡ1Ḡ2

p
γ̄p�Δτ�γ̄d �Δτ 0�

� R̄�2�γ̄p�Δτ�γ̄d �Δτ 0�: (11)

Here Ī1�Γ̄p�τ1;τ1�, Ḡ1�Γ̄d �τ 01;τ 01�, R̄�2�≡
ffiffiffiffiffiffiffiffiffi
Ī 1Ī2

p ffiffiffiffiffiffiffiffiffiffiffiffi
Ḡ1Ḡ2

p
,

γ̄p�Δτ� � Γ̄p�τ1; τ2�∕
ffiffiffiffiffiffiffiffiffi
Ī 1Ī 2

p
, and γ̄d �Δτ� � Γ̄d �τ 01; τ 02�∕ffiffiffiffiffiffiffiffiffiffiffiffi

Ḡ1Ḡ2

p
, etc. The function γ̄p�Δτ� satisfies 0 ≤ jγ̄p�Δτ�j ≤ 1

and diminishes over a Δτ-scale given by the inverse pump
bandwidth 1∕Δωp0. The function γ̄d �Δτ 0� also satisfies
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0 ≤ jγ̄d �Δτ 0�j ≤ 1 and diminishes over a Δτ 0-scale given by the
inverse frequency bandwidth 1∕Δωd0. The temporal widths of
γ̄p�Δτ� and γ̄d �Δτ 0� limit the ranges over which fringes could
be observed as functions of Δτ 0 and Δτ, respectively, in a
time-averaged two-photon interference experiment.

The coincidence count rate of Eq. (6) in the time-averaged
scheme therefore becomes

R̄�2�
si � κ21R̄

�2� � κ22R̄
�2� � κ1κ2R̄�2�γ̄p�Δτ�γ̄d �Δτ 0�

× ei�ωp0Δτ�ωd0Δτ 0�Δϕ� � c:c: (12)

A similar expression was reported in Ref. [11], where various
temporal two-photon interference effects have been described.
The time-averaged coherence function γ̄p�Δτ� has the same
functional form as the time-averaged coherence function of
the pump field. The time-averaged coherence function
γ̄d �Δτ 0� depends on the phase-matching function and the crys-
tal parameters, and its functional form shows up in the Hong–
Ou–Mandel (HOM) [7] and HOM-like effects [10,53].

3. SPECIAL CASE OF A GAUSSIAN
SCHELL-MODEL PUMP FIELD

In the last section, we considered PDC with a very general
nonstationary pump field and described how the temporal
coherence properties of the pump field get transferred to the
down-converted two-photon field. In this section, we consider
the pump field to be a widely studied class of nonstationary
fields, namely, the Gaussian Schell-model field, also known
as the nonstationary Gaussian pulsed fields [44].

The cross-spectral density function of a Gaussian Schell-
model field is given by [44]

hV ��ω 0 0 � ω0�V �ω 0 � ω0�i

� A exp

�
−
�ω 02 � ω 0 02�
4�Δωp0�2

�
exp

�
−
�ω 0 − ω 0 0�2
2�Δωc�2

�
; (13)

where Δωp0 is the frequency bandwidth of the field. The
parameter Δωc is called the spectral correlation width and it
quantifies the frequency separation up to which different fre-
quency components are phase-correlated. The limit Δωc → 0
corresponds to a continuous-wave, stationary field, in which
case the constituent frequency components are completely un-
correlated. The other limit Δωc → ∞ corresponds to a fully
coherent pulsed field, in which case the constituent frequency
components are perfectly phase-correlated. The corresponding
temporal correlation function ΓGS�t1; t2� can be calculated by
using the generalized Wiener–Khintchine theorem [44],

ΓGS�t1; t2� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�t1�I�t2�

p
γGS�Δt�; (14)

with Δt � t1 − t2, and where

I�t1�2�� �
2πΔωp0A

T
exp

�
−
t21�2�
2T 2

�
;

and γGS�Δt� � exp

�
−
�Δt�2
2τ2coh

�
:

Here τcoh � �Δωc∕Δωp0��1∕�2Δωp0�2 � 1∕�Δωc�2	1∕2 is
a measure of the coherence time of the field and T �
�1∕�2Δωp0�2 � 1∕�Δωc�2	1∕2 is a measure of the temporal

width of the nonstationary Gaussian pulse. The limit
Δωc → ∞ yields τcoh → ∞, as expected for a fully coherent
field, and the other limit Δωc → 0 yields τcoh � 1∕Δωp0, as
expected for a continuous-wave, stationary field.

Now, for conceptual clarity, we assume in this section that
Γd �τ 01 − t s−t i

2 ; τ 02 −
t s−t i
2 � � 1 and take the pump field to be the

Gaussian Schell-model field given by Eq. (13). Equation (7)
then becomes

Γ�2��t s ; t i ; τ1; τ2� � Γp

�
τ1 −

t s � ti
2

; τ2 −
t s � t i
2

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I
�
τ1 −

t s � t i
2

�
I
�
τ2 −

t s � ti
2

�s
γp�Δτ�;

(15)

where

I
�
τ1 −

t s � ti
2

�
� 2πΔωp0A

T
exp

�
−
�τ1 − t s�t i

2 �2
2T 2

�
; etc:;

and γp�Δτ� � exp

�
−
Δτ2

2τ2coh

�
:

As expected from Eq. (7), we find that in terms of τ1 −
ts�t i
2

and τ2 −
ts�ti
2 , the two-photon cross-correlation function in

Eq. (15) assumes the same functional form as does the
cross-correlation function in Eq. (14) in terms of t1 and t2.
When integrated over t, Eq. (15) yields

Γ̄�2� � Γ̄p�τ1; τ2� �
ffiffiffiffiffiffiffiffiffi
Ī1Ī 2

p
γ̄p�Δτ�; (16)

with Ī 1 � Ī2 � �2π�32Δωp0A and

γ̄p�Δτ� � exp

�
−
Δτ2

2τ̄2coh

�
;

where τ̄coh � 1∕Δωp0 is a measure of the coherence time.
The time averaging washes out effects due to frequency corre-
lations. Thus, only in the case of a stationary pump field
γ̄p�Δτ� � γp�Δτ� and τ̄coh � τcoh.

4. PUMP TEMPORAL COHERENCE AND
TWO-QUBIT ENERGY-TIME ENTANGLEMENT

Two-qubit states are the necessary ingredients for many
quantum information protocols [54–56] and have been realized
by exploiting the entanglement of PDC photons in several
degrees of freedom including polarization [57], time-energy
[12,15,16,34,40,47,58], position-momentum [18,59,60], and
orbital angular momentum (OAM) [21,61–63]. There have
been previous studies describing how correlations of the pump
field in polarization and spatial degrees of freedom affect the
entanglement of the generated two-qubit states. In the polari-
zation degree of freedom, it was shown [31] that the degree of
polarization P of the pump photon puts an upper bound of
�1� P�∕2 on the concurrence of the generated two-qubit
state. In the spatial degree of freedom, effects of pump spatial
coherence on the entanglement of the generated spatial two-
qubit state have been worked out for two-qubit states that have
only two nonzero diagonal elements, and for such states it has
been shown that the concurrence is bounded by the degree of
spatial coherence of the pump field [19]. However, to the best
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of our knowledge, no such relation has so far been derived for
the time-energy entangled two-qubit states.

There are two generic methods by which one makes a
PDC-based time-energy entangled two-qubit state. In the first
method, one uses a continuous-wave pump field, either single-
mode [12] or multimode [40,47]. In the second method, one
uses a pulsed pump field [15,16,34,58]. In both these methods,
a combination of post-selection strategies, such as selecting a
faster coincidence detection window, using arrival time of
pump photon as a trigger, etc., one makes sure that there
are only two alternative pathways in which the signal and idler
photons reach their respective detectors. The two alternative
pathways form the two-dimensional qubit space for the signal
and idler photons. We represent by js1i the state of the signal
photon in alternative 1, etc. Therefore, the density matrix
ρ2qubit of the two-qubit state can be written in the basis
fjs1iji1i; js1iji2i; js2iji1i; js2iji2ig as

ρ �

0
B@

a 0 0 c
0 0 0 0
0 0 0 0
c� 0 0 b

1
CA; (17)

where the diagonal terms a and b are the probabilities that
the signal and idler photons are detected in states js1iji1i
and js2iji2i, respectively, and the off-diagonal term c is a mea-
sure of coherence between states js1iji1i and js2iji2i. In an
experimental situation, the density matrix ρ can be represented
by the two alternative pathways of Fig. 1. Therefore, using
Eq. (12), we write a � ηκ21R̄

�2� and b � ηκ22R̄
�2�, where

η � 1∕�κ21R̄�2� � κ22R̄
�2�	 is the constant of proportionality.

The off-diagonal term is given by

c � ηκ1κ2R̄�2�γ̄p�Δτ�γ̄d �Δτ 0�ei�ωp0Δτ�ωd0Δτ 0�Δϕ�: (18)

The entanglement of ρ2 qubit, as quantified by Wootters’s
concurrence C�ρ2 qubit� [64], can be shown to be

C�ρ2 qubit� � 2jcj � 2κ1κ2R̄�2�

κ21R̄
�2� � κ22R̄

�2� γ̄p�Δτ�γ̄d �Δτ 0�: (19)

The pre-factor 2κ1κ2R̄�2�∕�κ21R̄�2� � κ22R̄
�2�� is no greater

than 1, and γ̄d �Δτ 0� also satisfies 0 ≤ jγ̄d �Δτ 0�j ≤ 1. We
therefore arrive at the relation C�ρ2 qubit� ≤ γ̄p�Δτ�.
Therefore, we find that the concurrence C�ρ2 qubit� of the
time-energy two-qubit state is bounded from above by the
degree of coherence of the pump photon, and thus that
the temporal correlations of the pump field set an upper
bound on the attainable concurrence for a two-qubit state
of the form of Eq. (17). We note that in situations in which
γ̄d �Δτ 0� ≈ 1 and κ1 � κ2, the maximum achievable concur-
rence for a pulsed field can be unity in principle, and for a
continuous-wave field it can be unity as long as Δτ is much
smaller than the coherence time of the pump field. The above
result is the temporal analog of the results obtained in the
polarization [31] and spatial [19] degrees of freedom.
However, unlike in the spatial degree of freedom, which does
not involve any space-averaged detection scheme, the results
derived in this paper show that even for the time-averaged
detection schemes, the temporal correlation properties of

the pump do directly decide the upper limit on entanglement
that a time-energy entangled two-qubit state can achieve.

5. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have shown that in PDC, the coherence
properties of a temporally partially coherent pump field get en-
tirely transferred to the down-converted entangled two-photon
field. Under the assumption that the frequency bandwidth of
the down-converted signal-idler photons is much larger than
that of the pump, we have worked out the temporal coherence
functions of the down-converted field for both infinitely fast
and time-averaged detection schemes. We have shown that
in each scheme the coherence function factorizes into two sep-
arate coherence functions with one of them carrying the entire
statistical information of the pump field. Taking the pump to
be a Gaussian Schell-model field, we have derived explicit ex-
pressions for the coherence functions. Finally, we have shown
that the concurrence of time-energy entangled two-qubit states
is bounded by the degree of temporal coherence of the pump
field. This result extends previously obtained results in the spa-
tial [19] and polarization [31] degrees of freedom to the tem-
poral degree of freedom and can thus have important
implications for understanding how correlations of the pump
field in general manifest as two-particle entanglement. Our re-
sults can also be important for time-energy two-qubit-based
quantum communication applications. This is because it has
been recognized that energy-time entangled two-qubit states
are better than the polarization two-qubit states for long-
distance quantum information [49,50], and our results show
that the temporal coherence properties of the pump field
can be used as a parameter for tailoring the two-qubit time-
energy entanglement. Moreover, it is known that the purity
of the individual photon states increases with the decrease in
the entanglement of the two-photon state. Therefore, our work
can also have implications for PDC-based heralded
single-photon sources [65,66] in the sense that the degree of
purity of heralded photons can be tailored by controlling
the coherence properties of the pump field.

Funding. Indian Institute of Technology Kanpur (IITK)
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Board (SERB) (EMR/2015/001931).
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